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SUMMARY

The research reported here deals with the topic of optimizing the instruc-
tional process. The problem can be investigated in many ways, but the approach
adopted was to limit consideration primarily to simple learning tasks for which
adequate mathematical models could be developed and shown to be reasonably
accurate.

For these models, we derived optimal or suitable suboptimal instructional
strategies. The basic idea was to solve for strategies that either maximize
the amount learned in a fixed time period or minimize the time necessary to
attain a prescribed level of performance. Once such strategies had been
formulated, experiments were carried out to evaluate their relative efficiency.
To the extent that particular strategies proved effective, they were incorporated
into computer-based instructional programs in initial reading currently in
operation at Stanford University.

The program of work involved a mathematical analysis of optimization
problems related to the learning process, and also represented a fairly
unique method for testing theories of learning. 1In this sense the project
was an attempt to bridge the gap between the psychologist's laboratory experi-
ments in learning theory and the practical problems of devising efficient
instructional strategies in the classroom. The optimization strategies
developed and tested during the course of this project were fairly restrictive
in character and applicable primarily to simple tasks such as those found in
initial reading, language arts, and elementary mathematics. On the other hand,
it is our hope that mathematically precise models for optimizing learning in
these simple tasks may in time provide guidelines for a theory of instruction
that is mathematically precise and yet has wide applicability.

INTRODUCTION

The term "theory of instruction" has been in widespread use for over a
decade and during that time has acquired a fairly specific meaning. By
consensus it denotes a body of theory concerned with optimizing the learning
process; stated otherwise, the goal of a theory of instruction is to pre-
scribe the most effective methods for acquiring new information, whether in
the form of higher-order concepts or rote facts. Although usage of the term
is widespread, there is no agreement on the requirements for a theory of
instruction. The literature provides an array of examples ranging from
speculative accounts of how children should be taught in the classroom to
formal mathematical models specifying precise branching procedures in
computer—-controlled instruction. Such diversity is healthy; to focus on
only one approach would not be productive in the long run. I prefer to use
the term "theory of instruction" to encompass both experimental and
theoretical revearch, with the theoretical work ranging from general
speculative accounts to specific quantitative models.

The task of going from a description of the learning process to a pre-
scription for optimizing learning must be clearly distinguished from the
task of finding the appropriate theoretical description in the first place.
However, there is a danger that preoccupation with finding prescriptions
for instruction may cause us to overlook the critical interplay between the
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two interprises. Developments in control theory and statistical decision
theory provide potentially powerful methods for discovering optimal decision-
making strategies in a wide variety of contexts. In order to use these

tools it is necessary to have a reasonable model of the process to be
optimized. Some learning processes can already be described with the required
degree of accuracy. This report will examine an approach to the psychology
of instruction which is appropriate when the learning is governed by such

a process.

A DECISION-THEORETIC ANALYSIS OF INSTRUCTION

The derivation of an optimal strategy requires that the instructional
problem be stated in a form amenable to a decision-theoretic analysis.
Analyses based on decision theory vary somewhat from field to field, but
the same formal elements can be found in most of them. As a starting point
it will be useful to identify these elements in a general way, and then
relate them to an instructional situation. They are as follows:

1. The possible states of nature.

2. The actions that the decision-maker can take to transform the
state of nature.

3. The transformation of the state of nature that results from each
action.

4. The cost of each action.

5. The return resulting from each state of nature.

In the context of instruction, these elements divide naturally into three
groups. Llements 1l and 3 are concerned with a description of the learning
process; elements 4 and 5 specify the cost-benefit dimensions of the problem;
and element 2 requires that the instructional actions from which the decision
maker is free to chose be precisely specified.

For the decision problems that arise in instruction, elements 1 and 3
require that a model of the learning process exist. It is usually natural
to identify the states of nature with the learning states of the student.
Specifying the transformation of the states of nature caused by the actions
of the decision-maker is tantamount to constructing a model of learning for
the situation under consideration. The learning model will be probabilistic
to the extent that the state of learning is imperfectly observable or the
transformation of the state of learning that a given instructional action
will cause is not completely predictable.

The specification of costs and returns in an instructional situation
(elements 4 and 5) tends to be straightforward when examined on a short-term
basis, but virtually intractable ovzr the long-term. For the short-term
one can assign costs and returns for the mastery of, ¢ay, certain basic
reading skills, but sophisticated determinations for the long-term value
of these skills to the individual and society are difficult to make. There
is an important role for detailed economic analyses of the long-term impact
of education, but such studies deal with issues at a more global level than
we shall consider here. The present analysis will be limited to those
costs and returns directly related to a specific instructional task.
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Element 2 is critical in determining the effectiveness of a decision-
theory analysis; the nature of this element can be indicated by an example.
Suppose we want to design a supplementary set of exercises for an initial
reading program that involve both sight-word identification and phonics.

Let us assume that two exercise formats have been developed, one for training
on sight words, the other for phonics. Given these formats, there are many
ways to design an overall program. A variety of optimization problems

can be generated by fixing some features of the curriculum and leaving others
to be determined in a theoretically optimal manner. For example, it may

be desirable to determine how the time available for instruction should be
divided between phonics and sight word recognition, with all other features
of the curriculum fixed. A more complicated question would be to determine
the optimal ordering of the two types of exercises in addition to the optimal
allocation of time. It would be easy to continue generating different
optimization problems in this manner. The main point is that varying the
set of actions from which the decision-maker is free to choose changes the
decision problem, even though the other elements remain the same.

Once these five elements have been specified, the next task is to
derive the optimal strategy for the learning model that best describes the
situation. If more than one learning model seems reasonable a priori, then
competing candidates for the optimal strategy can be deduced. When these
tasks have been accomplished, an experiment can be designed to determine
which strategy is best. There are several possible directions in which to
proceed after the initial comparison of strategies, depending on the results
of the experiment. If none of the supposedly optimal strategies produces
satisfactory results, then further experimental analysis of the assumptions
of the underlying learning models is indicated. New issues may arise even
if one of the procedures is successful. In one of the experiments that we
shall report, the successful strategy produces an unusually high error rate
during learning, which is contrary to a widely accepted principle of programmed
instruction (Skinner, 1968). When anomalies such as this occur, they
suggest new lines of experimental inquiry, and often require a reformulation
of the learning model.

CRITERIA FOR A THEORY OF INSTRUCTION

Our discussion to this point can be summarized by listing four criteria
that must be satisfied prior to the derivation of an optimal instructional
strategy.

. A model of the learning process.

Specification of admissible instructional actionms. '
Specification of instructional objectives.

. A measurement scale that permits costs to be assigned to each

of the instructional actions and payoffs to the achievement of

instructional objectives.

HLONOR

If these four elements can be given a precise interpretation then it is
generally possible to derive an optimal instructional policy. The solution
for an optimal policy is not guaranteed, but in recent years some powerful
tools have been developed for discovering optimal.or near optimal procedures
if they exist.

~3-




The four criteria listed above, taken in conjunction with methods for
deriving optimal strategies, define either a model of instruction or a
theory of instruction. Whether the term theory or model is used depends on
the generality of the applications that can be made. Much of my own work
has been concerned with the development of specific models for specific in-
structional tasks; hopefully, the collection of such models will provide
the groundwork for a general theory of instruction.

In terms of the criteria listed above, it is clear that a model or
theory of instruction is in fact a special case of what has come to be
known in the mathematical and engineering literature as optimal control
theory or, more simply, control theory (Kalman, Falb, & Arbib, 1969). The
development of control theory has progressed at a rapid rate both in the
United States and abroad, but most of the applications involve engineering
or economic systems of one type or ancther. Precisely the same problems
are posed in the area of instruction except that the system to be controlled
is the human learner, rather than a machine or group of industries. To the
extent that the above four elements can be formulated explicitly, methods
of control theory can be used in deriving optimal instructional strategies. ,

In the experiments that we shall report, two basic types of strategies
are examined. One is a response-insensitive strategy and the other a response-
sensitive strategy. A response~insensitive strategy orders the instructional
materials without taking into account the student's responses (except possibly
to provide corrective feedback) as he progresses through the curriculum. In
contrast, a response-sensitive strategy makes use of the student's response B
history in its stage~by-stage decisions regarding which curriculum naterials ' 2
to present next. Response-insensitive strategies are completely specified in
advance and consequently do not require a system capable of branching during ;
an instructional session. Response-sensitive strategies are more complex, but ’
have the greatest promise for producing significant gains for they must be b
at least as good, if not better, than the comparable response-insensitive :
strategy.

OPTIMIZING INSTRUCTION IN INITIAL READING

The first study to be described here is based on work concerned with the
development of a computer-assisted instruction (CAI) program for teaching
reading in the primary grades (Atkinson & Fletcher, 1972). The program pro-
vides individualized instruction in reading and is used as a supplement to
normal classroom teaching; a given student may spend anywhere from zero to
30 minutes per day at a CAI terminal. For present purposes only one set of
results will be considered, where the dependent measure is performance on
a standardized reading achievement test administered at the end of the
first grade. Using our data a statistical model can be formulated that
predicts test performance as a function of the amount of time the student
spends on the CAI system. Specifically, let P,;(t) be student i's performance
on a reading test administered at the end of first grade, given that he
spends time t on the CAI system during the school year. Then within certain
limits the following equation holds:

(1) Pj(t) = a5 - Byexp(-yit)




Depending on a student's particular parameter values, the more time spent
on the CAI program the higher the level of achicevement at the end of the
year.  The parametern o, A, and vy, characterlze a glven student and vary
From one student to Lhe nexts; o and (u=f2) arc wmeasures of the student's
max imal and minimal levels of achlevement respectively, and vy is a rate
of progress measurec. These paramcters can be estimated from a student's
response record obtained during his first hour of CAI. Stated otherwise,
data from the first hour of CAI can be used to estimate the parameters

a, B, and vy for a given student, and then the above equation enables us to
predict end-of-year performance as a function of the CAI time allocated to
that student.

The optimization problem that arises in this situation is as follows:
Let us suppose that a school has budgeted a fixed amount of time T on the
CAI system for the school year and must decide how to allocate the time
among a class of n first-grade students. Assume, further, that all students
have had a preliminary run on the CAI system so that estimates of the
parameters o, B, and Y have been obtained for each student.

Let tj be the time allocated to student i. Then the goal is to select
a vector (tl, tz,...,tn) that optimizes learning. To do this let us check
our four criteria for deriving an optimal strategy.

The first criterion is that we have a model of the learning process.
The prediction equation for P, (t) does not offer a very complete account
of learning; however, for purposes of this problem the equation suffices as
a model of the learning process, giving all of the information that is
required. This is an important point to keep in mind: the nature of the
specific optimization problem determines the level of complexity that must
be represented in the learning model. For some problems the model must
provide a relatively complete account of learning in order to derive an
optimal strategy, but for other problems a simple descriptive equation of
the sort presented above will suffice.

The second criterion requires that the set of admissible instructional
actions be specified. For the present case the potential actions are simply
all possible vectors (tj, t2s.+.5t,) such that the t;'s are non-negative
and sum to T. The only freedom we have as decision makers in this situation
is in the allocation of CAI time to individual students.

The third criterion requires that the instructional objective be
specified. There are several objectives that we could choose in this
situation. Let us consider four possibilities:

(a) Maximize the mean value of P over the class of students.

(b) Minimize the variance of P over the class of students.

(c) Maximize the number of students who score at grade level at the
end of the first year.

(d) Maximize the mean value of P satisfying the constraint that the
resulting variance of P is less than or equal to the variance
that would have been obtained if no CAI was administered.

Objective (a) maximizes the gain for the class as a whole: (b) aims to
reduce differences among students by making the class as homogeneous as
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possible; (c) is concerned specifically with those students that fall
behind grade level; (d) attempts to maximize performance of the whole
class but insures that differences among students are not amplified by
CAI. Other instructional objectives can be listed, but these are the ones
that secmed most relevent. For expository purposes, let us select (a) as
the instructional objective.

The fourth criterion requires that costs be assigned to each of the
instructional actions and that payoffs be specified for the instructional
objectives. In the present case we assume that the cost of CAI does not
depend on how time is allocated among students and that the measurement
of payoff is directly proportional to the students' achieved value of P.

In terms of our four criteria, the problem of deriving an optimal
instructional strategy reduces to maximizing the function

1 <=
(2) ?(tl.tz’... ’tn). '1-{ 12=-]-.'Pi(ti)
1."n
= .r_; - ai + Bie}‘p<"Yiti)
subject to the constraint that.
n
(3) Zti =T
i=1
and
ti z 0.

This maximization can be done by using the method of dynamic programming
(Bellman, 1961). 1In order to illustrate the approach, computations were

made for a first-grade class where the parameters o, B, and y had been
estimated for each student. Employing these estimates, computations were
carried out to determine the time allocations that maximized the above equa-
tion. For the optimal policy the predicted mean performance level of the
class, P, was 15% higher than a policy that allocated time equally to students
(i.e., a policy where ty = t; for all i and j). This gain represents a sub-
stantial improvement; the drawback is that the variance of the P scores is '
roughly 15% greater than for the equal-time policy. This means that if we

are interested primarily in raising the class average, we must let the rapid
learners move ahead and progress far beyond the slow learners.

Although a time allocation that complies with objective (a) did increase
overall class performance, the correlated increase in variance leads us
to believe that other objectives might be more beneficial. For comparison,
time allocations also were computed for objectives (b), (c), and (d). Figure 1
presents the predicted gain in P as a percentage of P for the equal-time




15 |- .

0 — -

7222

707,
|

RELATIVE PERCENT GAIN
o

N

| | l |
. a b C d

INSTRUCTIONAL OBJECTIVE

Figure l: Percent gains in the mean value of P when compared with an

equal-time policy for four policies each based on a different

instructional objective.




policy. Objectives (b) and (c) yield negative gains and so they should since
their goal is to reduce variability, which is accomplished by holding

- back on the rapid learners and giving a lot of attention to the slower
ones. The reduction in variability for these two objectives, when compared
with the equal-time policy, is 12% and 10%, respectively. Objective (d),
which attempts to strike a balance between objective (a) on the one hand
and objectives (b) and (c) on the other, yields an 8% increase in P and
yet reduces variability by 6%.

In view of these computations, objective (d) seems to be preferred; it
offers a substantial increase in mean performance while maintaining a low
level of variability. As yet, we have not implemented this policy, so
only theoretical results can be reported. Nevertheless, these examples
yield differences that illustrate the usefulness of this type of analysis.
They make it clear that the selection of an instructional objective should
not be done in isolation, but should involve a comparative analysis of
several alternatives taking into account more than one dimension of per-
formance. For example, even if the principal goal is to maximize P, it
would be inappropriate in most educational situations to select a given
objective over some other if it yielded only a small average gain while
variability mushroomed.

OPTIMAL SEQUENCING PROCEDURES

_ One application of computer-assisted instruction (CAI) which has proved to
be very effective in the primary grades involves a regular program of practice
and review specifically designed to complement the efforts of the classroom
teacher (Atkinson, 1969). Some of the curriculum materials in such programs take
the form of lists of instructional units or items. The objective of the CAI
programs is to teach students the correct response to each item in a given list.
Typically, a sublist of items is presented each day in one or more fixed

exercise formats. The optimization problem that arises concerns the selection

of items for presentation on a given day.

}

The Stanford Reading Project is an example of such a program in initial
reading instruction (Atkinson, Fletcher, Chetin, & STauffer, 1971). The vocab-
ularies of several of the commonly used basal readers were compiled into one

. dictionary and a variety of exercises using these words were developed to teach
reading skills. These exercises were designed principally to strengthen the
student's decoding skills, with special emphasis on letter identification, ‘
sight-word recognition, phonics, spelling patterns, and word comprehension.
The details of the teaching procedure vary from one exercise to another,
but most include a sequence in which a curriculum item is presented, eliciting
a response from the student, followed by a short period for studying the
correct response. For example, one exercise in sight-word recognition has
the following format:

Teletype Display Audio Message

NUT MEN RED Type red

Three words are printed on the teletype, followed by an audio presentation of
one of the words. Control is then turned over to the student; if he types the
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correct word a reinforcing message is given and the computer program then pro-
ceeds to the next presentation. If the student responds incorrectly or exceeds
the time, the teletype prints the correct word simultaneously with its audio
presentation and then moves to the next presentation. Under an early version
of the program, items were presented in a predetermined sublists, with an
exercise continuing on a sublist until a specified criterion has been met.

Strategies can be found that will improve on the fixed order of presen-
tation. Two studies to be described below are concerned with the development
,of such strategies. One study examines alternative presentation strategies
for teaching spelling words to elementary school children, and the other
examines strategies for teaching Swahili vocabulary items to college-~level
students. The optimization problems in both studies were essentially the
same. A list of N items is to be learned, and a fixed number of days, D,
are allocated for its study. On each day a sublist of items is presented for
test and study. The sublist always involves M items and each is presented
only once for test followed by a study period. The total set of N items is
extremely large with regard to any sublist of M items. Once the experimenter
has specified a sublist for a given day its order of presentation is random.
After the D days of study are completed, a post-test is given over all items.
The parameters N, D and M are fixed, and so is the instructional format on
each day. Within these constraints the problem is to maximize performance on
a post-test by an appropriate selection of sublists from day to day. The
strategy for selecting sublists from day to day is dynamic (or response
sensitive, using the terminology of Groen and Atkinson, 1966) to the extent
that it depends upon the student's prior history of performance.

Three Models of the Learning Process

Two extremely simple learning models will be considered first. Then a
third model which combines features of the first two will be described.

In the first model, the state of the learner with respect to each item is
completely determined by the number of times the item has been studied. At the
start of the experiment an item has some initial probability of error; each
time the item is presented its error probability is reduced by a factor a,
which is less than one. Stated as a difference equation, the probability of
an error on the nt+1St presentation of an item.is related to its probability
on the nt presentation as follows:

(4) 9nt+1 = g

Note that the error probability for a given item depends on the number of times
it has been reduced by the factor «; that is, the number of times it has been
presented. Learning is the gradual reduction in the probability of error by
repeated presentations of items. This model is sometimes called the linear
model because the equation describing change in response probability is linear.

In the second model, mastery of an item is not at all gradual. At any
point in time a student is in one of two states with respect to each item:
the learned state or the unlearned state. If an item in the learned state is
presented, the correct response is always given; if an item is in the unlearned
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state, an incorrect response is given unless the student makes a correct
response by guessing. When an unlearned item is presented, it may move
into the learned state with probability c. Stated as a difference equation,

Q, » with probability l-c

) 1 =

( 0 , with probakility ¢ .

Once an item is learned, it remains in the learned state throughout the
course of instruction. Some items are learned the first time they are
presented, others may be presented several times before they are finally
learned. Therefore, the list as a whole is learned gradually. But for
any particular item, the transition from the unlearned to the learned state
occurs on a single trial. The model is sometimes called the all-or-none-
model because of this characterization of the possible states of learning.

The third model to be considered is the random-trial increments (RTI)
model. and represents a compromise between the linear and all—-or~none model
(Norman, 1964). For this model

(qn » with probability l-c

© Uer = 2

g, with probability ¢ .

If ¢ = 1, the RTI model reduces to the linear model; if o = O, it reduces to
the all-or-none model. However, for ¢ < 1 and ¢ > 0, the RTI model generates

predictions that are quite distinct from both the linear and the all-or-none
models.

For all three models the probability of an error on the first trial is a
parameter that may need to be estimated in certain situations; to emphasize this
point the initial error probability will be written as q' henceforth. It should
be noted that the all-or-none model and the RTI model are response sensitive in
that the learner's particular history of correct and incorrect responses makes
a difference in predicting performance on the next presentation of an item.

In contrast, the linear model is response insensitive; its prediction depends
only on the number of prior presentations and is not improved by a knowledge of
the learner's response history.

The Cost/Benefit Structure

At the present level of analysis, it will expedite matters if some assump-
tions are made to simplify the appraisal of costs and benefits associated
with various strategies. It is tacitly assumed that the subject matter being
taught is sufficiently beneficial to justify allocating a fixed amount of time
to it for instruction. Since the exercise formats and the time allocated to
instruction are the same for all strategies, it is reasonable to assume that
the costs of instruction are the same for all strategies as well. If the
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costs of instruction are equal for all strategies, then for purposes of
comparison they may be ignored and attention focused on the comparative
benefits of the various strategies. This is an important simplification
because it affects the degree, of precision necessary in the assessment of
costs and benefits. If both costs and benefits are significantly variable
in a problem, then it is essential that both quantities be estimated
accurately. This is often difficult to do. When one of these quantities
can be ignored, it suffices if the other can be assessed accurately enough
to order the possible outcomes. This is usually fairly easy to accomplish.

In the present problem, for example, it is reasonable to consider all the
items equally beneficial. This implies that benefits depend only on the
overall probability of a correct response, not on the particular items
known. It turns out that this specification of cost and benefit is
sufficient for the learning models to determine optimal strategies.

The above cost/benefit assumptions permit us to concentrate on the main
concern of this paper, the derivation of the educational implications of
learning models. Also, they are approximately valid in many instructional
contexts. Nevertheless, it must be recognized that in the majority of
cases these assumptions will not be satisfied. For instance, the assumption
that the alternative strategies cost the same to implement usually does not
hold. It only holds as a first approximation in the case being considered
here. 1In the present formulation of the problem, a fixed amount of time is
allocated for study and the problem is to maximize learning, subject to
this time constraint. An alternative formulation which is more appropriate
in some situations fixes a minimum criterion level for learning. In this
formulation, the problem is to find a strategy for achieving this criterion
level of performance in the shortest time. As a rule, both costs and
benefits must be weighed in the analysis, and frequently subtopics within a
curriculum vary significantly in their importance. Sometimes there is a
choice among several exercise formats. In certain cases, whether or not
a certain topic should be taught at all is the critical question. Smallwood
(1971) has treated a problem similar to the one considered in this paper in

a way that includes some of these factors in the structure of costs and
benefits.

Deducing Strategies from the Learning Models

Optimal strategies can be deduced for the linear and all-or-none models
under the assumption that all items have ghe same learning parameters and
initial error probabilities. The situation is more complicated in the case
of the RTI model. An approximation to the optimal strategy for the RTI case

will be discussed later; in this case the strategy explicitly allows for
individual differences in parameter values.

For the linear model, if an item has been presented n times, the pro-
bability of an error on the next presentation of the item , is o™ q'; when
the item is presented, the eri'ror probability is reduced to a"q'. The size
of the reduction is thus o “(l-a)q'. Observe that the size of the decrement
in error probability gets smaller with each presentatinn of the item. This

observation can be used to deduce that the following procedure is optimal.
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On a given day, form the sublist of M items by selecting
those items that have received the fewest presentations
up to that point. If more than M items satisfy this
criterion, then selec* items at random from the set
satisfying the criterion.

Upon examination, this strategy is seen to be equivalent to the standard
cyclic presentation procedure commonly employed in experiments on paired-
associate learning. It amounts to presenting all items once, randomly re-
ordering them, presenting them again and repeating the procedure until the
number of days allocated to instruction have been exhausted.

According to the all-or-none model, once an item has been learned there
is no further reason to present it. Since all unlearned items are equally
likely to be learned if presented, it is intuitively reasonable that the
optimal presentation strategy selects the item least likely to be in the
learned state for presentation. In order to discover a good index of the
likelihood of being in the learned state, consider a student's response
protocol for a single item. If the last response was incorrect, the item
was certainly in the unlearned state at that time, although it may then have
been learned during the study period that immediately followed. If the last
response was correct, then it is more likely that the item is now in the
learned state. In general, the more correct responses there are in the
protocol since the last error on the item, the most likely it is that the
item is in the learned state.

The preceding observations provide a heuristic justification for an
algorithm which Karush and Dear (1966) have proved is in fact the optimal
strategy for the all-or-none model. The optimal strategy requires that for
each student a bank of counters be set up, one for each word in the list.
To start, M different items are presented each day until each item has
been presented once and a 0 has been entered in its counter. On all sub-
sequent days the strategy requires that we conform to the following two
rules:

1. Whenever an item is presented, increase its counter by 1 if the
subject's response is correct, but reset it to O if the response
is incorrect.

2, Present the M items whose counters are lowest among all items. If
more than M items are eligible, then select randomly as many Ltems
as are nccded to complete the sublist of size M from those having
the same highest counter reading, having selected all items with
lower counter values. '

For example, suppose 6 items are presented each day and after a given day a
certain student has 4 items whose counters are 0, 4 whose counters are 1,

and higher values for the 1rast of the counters. His study list would consist
of the 4 items whose counters are O, and 2 items selected at random from

the 4 whose counters are 1. i
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It has been possible to find relatively simple optimal strategies for
the linear and all-or-none models. It is noteworthy that neither strategy
depends on the values of the parameters of the respective models (i.e., on
&, ¢, Or q'). Another exceptional feature of these two models is that it is
possible to condense a student's response protocol to one index per item
without losing any information relevant to presentation decisions. Such
condensations of response protocols are referred to as sufficient histories
(Groen & Atkinson, 1966). Roughly speaking, an index summarizing the
information in a student's response protocol is a sufficient history if any
additional information from the protocol would be redundant in the
determination of the student's state of learning. The concept is analogous
to a sufficient statistic. If one takes a sample of observations from
a population with an underlying normal distribution and wishes to estimate
the population mean, the sample mean is a sufficient statistic. Other
statistics that can be calculated (such as the median, the range, and the
standard deviation) cannot be used to improve on the sample mean as an
estimate of the population mean, though they may be useful in assessing
the precision of the estimate. 1In statistics, whether or not data can be
summarized by a few simple sufficient statistics is determined by the nature
of the underlying distribution. For educational applications, whether or
not a given instructional process can be adequately monitored by a simple
sufficient history is determined by the model representing the underlying
learning process.

The random~trial increments model appears to be an example of a process
for which the information in the subject's response protocol cannot be
condensed into a simple sufficient history. It is also a model for which the
optimal strategy depends on the values of the model parameters. Consequently,
it is not possible to state a simple algorithm for the optimal presentation
strategy for this model. Suffice it to say that there is an easily computable
formula for determining which item has the best expected immediate gain,
if presented. The strategy that presents this item should be a reasonable
approximation to the optimal strategy (Calfee, 1970). More will be said
later regarding the problem of parameter estimation and some of its
ramifications. ‘

If the three models under consideration are to be ranked on the basis of
their ability to account for data from laboratory =xperiments employing the
standard presentation procedure, the order of preference is clear. The
all-or-none model provides a better account of the data than the linear
model, and the random-trial increments model is better than either of them
(Atkinson & Crothers, 1964). This does not necessarily imply, however,
that the optimization strategies derived from these models will receive the
same ranking. The standard cyclic presentation procedure used in most
learning experiments may mask certain deficiencies in the all-or-none or
RTI models which would manifest themselves when the optimal presentation
strategy specified by one or the other of these models was employed.

-13-




AN EVALUATION OF THE ALL-OR-NONE STRATEGY

Lorton (1971), in a Ph.D. Thesis conducted under the auspices of the
present grant, compared the all-or-none strategy with the standard procedure
in an experiment in computer-assisted spelling instruction with elementary
school children. The former strategy is optimal if the learning process is
indeed all-or-none, whereas the latter is optimal if the process is linear.
The experiment was one phase of the Stanford Reading Project using computer
facilities at Stanford University linked via telephone lines to student
terminals in the schools.

Individual lists of 48 words were compiled in an extensive pretest
program to guarantee that each student would be studying words of approximately
equal difficulty which he did not already know how to spell. A within-subjects
design was used in an effort to make the comparison of strategies as sensitive
as possible. Each student's individualized list of 48 words was used to form
two comparable lists of 24 words, one to be taught using the all-or-none
strategy and the other using the standard procedure. Each day a student was
given training on 16 words, 8 from the list for standard presentation and 8
from the list for presentation according to the all-or-none strategy. There
were 24 training sessions followed by three days for testing all the words;
approximately two weeks later three more days were spent on a delayed retention
test. Using this procedure, all words in the standard presentation list
received exactly one presentation in successive 3-day blocks during training.
Words in the list presented according to the all-or-none algorithm received
from O to 3 presentations in successive 3-day blocks during training, with
one presentation being the average. A flow chart of the daily routine is
given in Figure 2.

The results of the experiment are summarized in Figure 3. The proportions
of corrcet responses are plotted for successive 3-day blocks during training,
followed by the first overall test and then the two-week delayed test. Note
that during training the proportion correct is always lower for the all-or-none
procedure than for the standard procedure, but on both the final test and the
retention test the proportion correct is greater for the all-or-none strategy.
Analysis of variance tests verified that these results are statistically
significant. The advantage of approximately ten percentage points on the
post—-tests for the all-or-none procedure is of practical significance as well.

The observed pattern of results is exactly what would be predicted if the
all-or-none model does indeed describe the learning process. As was shown
earlier, final test performance should be better when the all-or-none optimiza-
tion strategy is adopted as opposed to the standard procedure. Also the greater
proportion of error for this strategy during training is to be expected. . The
all-or-none strategy presents the items least likely to be in the learned
state, so it is natural that more errors would be made during training.

A TEST OF A PARAMETER-DEPENDENT STRATEGY

As noted earlier, the strategy derived for the all-or-none model in the
case of homogeneous items does not depend on the actual values of the model
parameters. In many situations either the assumptions of the all-or-none
model or the assumption of homogeneous items or both are seriously violated,

14—
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so it is necessary to consider strategies based on more general models.
Laubsch (1969), in a Ph.D. Thesis conducted under the auspices of the
present grant, considered the optimization problem for cases where the
RTI model is appropriate. He made what is perhaps a more significant
departure from the assumptions of the all-or-none strategy by allowing the
parameters of the model to vary with students and items. The following
discussion is based upon Laubsch's work, but introduces a more satisfactory
formulation of individual differences. This change and the estimation of
initial condition parameters produce experimental measures of the
effectiveness of optimization procedures that are significantly greater
than those reported by Laubsch.

It is not difficult to derive an approximation to the optimal strategy
for the RTI model that can accommodate student and item differences in
parameter values, if these parameters are known. Since parameter values
must be specified in order to make the necessary calculations to determine
the optimal study list, it makes little difference whether these numbers
are fixed or vary with students and items. However, making estimates of
these parameter values in the heterogeneous case presents some difficulties.

When the parameters of a model are homogeneous, it is possible to pool
data from different subjects and items to obtain precise estimates. Estimates
based on a sample of students and items can be used to predict the performance
of other students or the same students on other items. When the parameters
are heterogeneous, these advantages nc longer exist unless variations in
the parameter values take some known form. For this reason it is necessary
to formulate a model stating the composition of each parameter in terms of
a subject and item component.

Let m;; be a generic symbol for a parameter characterizing student i and
item j. An example of the kind of relationship desired is a fixed-effects
subjects~by-items analysis of variance model:

(7) E('nij) =m+ a; + dj
Where m is the mean, a; is the ability of student i, and d. is the difficulty
of item j. Because the learning model parameters we are iﬂterested in are
probabilities, the above assumption of additivity is not met; that is, there

is no guarantee that Equation 7 would yield estimates bounded between 0 and 1.
But there is a transformation of the parameter that circumvents this difficulty.
In the present context, this transformation has an interesting intuitive
justification.

Instead of thinking directly in terms of the parameter Teso it is helpful
to think in terms of the odds ratio ﬂi./l—ﬂi-. Allow two assu&ptions: (1) the
odds ratio is proportional to student ibility; (2) the odds ratio is inversely
proportional to item difficulty. This can be expressed algebraically as

(8) &y




where K is a proportionality constant. Taking logarithms on both sides
yields

log—ié!i- = log K 4+ log a, - loy G
(9) l—xij i J

The logarithm of the odds ratio is usually referred to as the "logit." Let
log k = u, log a; = Ai’ and -log dj = Dj' Then Equation 9 becomes

(10) logit myg = B+ A +D,

Thus, the two assumptions made above lead to an additive model for the values
of the parameters transformed by the logit function. Equation 10, by defining
a subject-item parameter ﬂ.j in terms of a subject parameter A, applying to all
items and an item parameter“D. applying to all subjects, signi%icantly reduces
the number of parameters to be estimated. If there are N items and S subjects,
then the model requires only N+S parameters to specify the learning parameters
for NxS subject-items. More importantly, it makes it possible to predict a
student's performance on items he has not been exposed to from the performance
of other students on them. This formulation of learning parameters is
essentially the same as the treatment of an analogous problem in item analysis
given by Rasch (1966). Discussion of this and related models for problems

in mental test theory is given by Birnbaum (1968).

Given data from an experiment, Equation 10 can be used to obtain reason-
able parameter estimates, even though the parameters vary with students and
items. The parameters T3 are first estimated 'for each student-item protocol,
yielding a set of initial estimates. Next the logistic transformation is
applied to these initial estimates, and then using these values subject
and item effects (A; and D;) are estimated by standard analysis of variance
procedures. The estimates of student and item effects are used to adjust
the estimate of each transformed student-item parameter, which in turn is
transformed back to obtain the final estimate of the original student-item
parameter.

The first students in an instructional program which employs a parameter-
dependent optimization scheme like the one outlined above do not benefit
maximally from the program's sensitivity to individual differences in students
and items; the reason is that the initial parameter estimates must be based
on the data from these students. As more and more students complete the
program, estimates of the D.'s become more precise until finally they may be
regarded as known constants”of the system. When this point has been reached,
the only task remaining is to estimate A; for each new student entering the
program. Since the D.'s are known, the estimates of m.;; for a new student
are of the right ordef, although they may be systematically high or low until
the student component can be accurately assessed.

Parameter-dependent optimization programs with the adaptive character
just described are potentially of great importance in long-term instructional
programs. Of interest here is the RTI model, but the method of decomposing
parameters into student and item components would apply to other models as
well. We turn now to an experimental test of the adaptive optimization
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program basced on the RTI model. In this case the parameters «, c, and q'
of the RTI model were separated into item and subject components following
the logic of Equation 10. That is, the parameters for subject i working
on item j were defined as follows:

logit q (@) 2l pled
: .

i 5 H

4
(11 logit ¢, = wed A§°) + Dg")

[RY

logit Qj4 = p(9°) - A§Q') + ng )

Note that A(a) A(c) and A(q % e meas r s of t e ab111ty of subject i and
hold for ali 1tems, whereas D. , and D% and D'9 ) are measures of the
difficulty of item j and hold for all subJects.

The instructional program was designed to teach 300 Swahili vocabulary
items to college-level students. Two presentation strategies were employed:
(1) the all-or-none procedure and (2) the adaptive optimization procedure
based on the RTI model. As in the Lorton study, a within-subjects design was
employed in order to provide a sensitive comparison of the strategies. For
each student two sublists of 150 items were formed at random from the master
list; instruction on items from one sublist was governed by the all-or-none
strategy, and by the adaptive optimization strategy for the other sublist.
Each day a student was tested on and studied 100 items presented in a random
order; 50 items were from the all-or-none sublist chosen using the all-or-none
strategy, and 50 from the adaptive optimization list selected according to
that strategy. A Swahili word would be displayed and the student was
required to give its English translation. Reinforcement consisted of a
printout of the correct Swahili-English pair. Twenty s:zh training sessions
were involved, each lasting for approximately one hour. Two or three days
after the last training session an initial post-test was administered over
all 300 items; a delayed post-test was given approximately two weeks later.

The lesson optimization program for the RTI model was more complex than
those described earlier. Each night the response data for that day was
entered into the system and used to update parameter estimates; in this
case an exact record of the complete presentation sequence and response
history had to be preserved. ‘A computer-based search algorithm was used to
estimate parameters and thus the more accurate the previous day's estimates,
the more rapid was the search for the updated parameter values. Once updated
estimates had been obtained, they were entered into the optimization program
to select individual lists for each stud nt to b run the ?ext day. Early
in the experiment (before estimates of D'®) and D'Y / had stabilized)
the computation time was fairly lengthy, but 1t rapidly decreased as more

data accumulated and the system homed in on precise estimates of item
difficulty.

-19-

s §




Figure 4 presents the final test results and indicates that for both the
initial and delayed post-tests the parameter-dependent strategy of the RTI
model was markedly superior to the all-or-none strategy; on the initial
post—test the relative improvement was 41 percent and 67 percent on the
delayed post-test. It is apparent that the parameter-dependent strategy
was more sensitive than the all-or-none strategy in identifying and pre-
senting those items that would benefit most from additional study. Another
feature of the experiment was that students were run in successive groups,
each starting about one week afier the prior group. As the theory would
predict, the overall gains produced by the parameter-dependent strategy
increased from one group to the next. The reason is that early in the
experiment estimates of item difficulty were crude, but improve with each
successive wave of students. Near the end of the experiment estimates
of item difficulty were quite exact, and the only task that remaixeeg when
a new studelzt'game on the system was to estimate his particular A e,
A(c), and A'?'/ values.

Another set of experiments dealing with a similar problem is presented
in the appendix to this report. These experiments are particularly important
because they examine the issue of learner—-controlled instruction as a
supplement to strategies of the sort considered above.

CONCLUSIONS AND RECOMMENDATIONS

The studies reported here illustrate one approach that can contribute
to the development of a theory of instruction. They deal with relatively
simple problems and thus do not indicate the range of developments that
are clearly possible. It would be a mistake, however, to conclude that
this approach offers a solution to the problems facing education. There
are some fundamental obstacles that limit the generality of the work.

The major obstacles may be identified in terms of the four criteria
we specified as prerequisites for an optimal strategy. The first criterion
concerns the formulation of learning models. The models that now exist are
totally inadequate to explain the subtle ways by which the human organism
stores, processes, and retrieves information. Until we have a much deeper
understanding of learning, the identification of truly effective strategies
will not be possible. However, an all-inclusive theory of learning is not a
prerequisite for the development of optimal procedures. What is needed
instead is a model that captures the essential features of that part of the
learning process being tapped by a given instructional task. Even models
that may be rejected on the basis of laboratory investigation can be useful
in deriving instructional strategies. The two learning models considered in
this paper are extremely simple, and yet the optimal strategies they generate
are quite effective. My own preference is to formulate as complete a
learning model as intuition and data will permit and then use that model to
investigate optimal procedures; when possible the learning model will be
represented in the form of mathematical equations but otherwise as a set
of statements in a computer-simulation program. The main point is that the
development of a theory of instruction cannot progress if one holds the view
that a complete theory of learning is a prerequisite. Rather, advances in
learning theory will affect the development of a theory of instruction, and
conversely the development of a theory of instruction will influence research
on learning.
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The second criterion for deriving an optimal strategy requires that
admissible instructional actions be clearly specified. The set of potential
instructional inputs places a definite limit on the effectiveness of the
optimal strategy. In my opinion powerful instructional strategies must
necessarily be adaptive; that is, they must be sensitive on a moment-to-
moment basis to a learner's unique response history. My judgment on this
matter is based on limited experience, restricted primarily to research on
teaching initial reading. In this area, however, the evidence seems to be
absolutely clear: the manipulation of method variables accounts for only
a small percentage of the variance when not accompanied by instructional
strategies that permit individualization. Method variables like the modified
teaching alphabet, oral reading, the linguistic approach, and others
undoubtedly have beneficial effects. However, these effects are minimal
in comparison to the impact that is possible when instruction is adaptive
to the individual learner. Significant progress in dealing with the nation's
problem of teaching reading will require individually prescribed programs,
and sophisticated programs will necessitate some degree of computer inter-
vention either in the form of CAI or computer-managed instruction. As a
corollary to this point, it is evident from observations of students on our
CAI Reading Program that the more effective the adaptive strategy the less
important are extrinsic motivators. Motivation is a variable in any form of
learning, but when the instructional process is truly adaptive the student's
progress is sufficient reward in its own right.

The third criterion for an optimal strategy deals with instructional
objectives, and the fourth with cost-benefit measures. 1In the analyses
presented here, it was tacitly assumed that the curriculum material being
taught is sufficiently beneficial to justify allocating time to it. Further,

.in both examples the costs of instruction were assumed to be the same for

all strategies. If the costs of instruction are equal for all strategies,
they may be ignored and attention focused on the comparative benefits of the
strategies. This is an important point because it greatly simplifies the
analysis. If both costs and benefits are significant variables, then it

is essential that both be accurately estimated. This is often difficult to
do. When one of these quantities can be ignored, it suffices if the other
can be assessed accurately enough to order the possible outcomes. As a
rule, both costs and benefits must be weighed in the analysis, and fre-
quently subtopics within a curriculum vary significantly in their importance.
In some cases, whether or not a certain topic should be taught at all is the
critical question. Smallwood (1971) has treated problems similar to the
oncs considered in this article in a way that includes some of these factors
In the structure of costs and benefits.

My last remarks deal with the issue of learner-controlled instruction.
One way to avoid the challenge and responsibility of developing a theory of
instruction is to adopt the view that the learner is the best judge of what
to study, when to study, and how to study. I am alarmed by the number of
individuals who advocate this position despite a great deal of negative
evidence. Don't misinterpret this remark. There obviously .is a place for
the learner's judgments in making instructional decisions. In several CAI
programs that I have helped develop, the learner plays an important role in
determining the path to be followed through the curriculum. However, using
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the learner's judgment as one of several items of information in making an
instructional decision is quite different f:om proposing that the learner
should have complete control. Our data, and the data of others, indicate
that the learner is not a particularly effective decision maker. Arguments
against learner-controlled programs are unpopular in the present climate of
opinion, but they need to be made so that we will not be seduced by the
easy answer that a theory of instruction is 1ot required because, ''who can
be a better judge of what is best for the student than the student himself."

It has become fashionable in recent years to criticize learning theorists
for ignoring the prescriptive aspects of instruction, and some have argued

that efforts devoted to cthe laboratory analysis of learning should be
raedivectod Lo the study of Tearning as It occurs o real=life situations,
These ceritliclam: are not entlirely unjustifled for in practlece psychologlsts

have too narrowly defined the ficld of learning, but to focus all cffort on
the study of complex instructional tasks would be a mistake. Some successes
might be achieved, but in the long run understanding complex learning
situations must depend upon a detailed analysis of the elementary perceptual
and cognitive processes that make up the human information handling system.
The trend to press for relevance of learning theory is healthy, but if

the surge in this direction goes too far, we will end up with a massive

set of prescriptive rules and no theory to integrate them.

It nceds to be emphasized that the interpretation of complex phenomena
is problematical, even in the best of circumstances. The case of hydrodynamics
is a good example for it is one of the most highly developed branches of
theoretical physics. Differential equations expressing certain basic
hydrodynamic relationships were formulated by Euler in the eighteenth
century. Special cases of these equations sufficed to account for a wide
variety of experimental data. These sucdesses prompted Lagrange to assert
that the success would be universal were it not for the difficulty in
integrating Euler's equations in particular cases. Lagrange's view is
still widely held, in spite of numerous experiments yielding anamolous
- results. Euler's equations have been integrated in many cases, and the
results were found to disagree dramatically with observation, thus contra-
dicting Lagrange's assertion. The problems involve more than mere fine
points, and raise serious paradoxes when extrapolations are made from
results obtained in the laboratory to actual conditions. The following
quotation from Birkhoff (1960) should strike a sympathetic cord among
those trying to relate psychology and education: 'These paradoxes have
been the subject of many witticisms. Thus, it has been said that in the
nineteenth century, fluid dynamicists were divided into hydraulic engineers
who observed what could not be explained, and mathematicians who explained
things that could not be observed. It is my impression that many survivors
of both species are still with us."

Research on learning appears to be in a similar state. Educational re-
searchers are concerned with experiments that cannot be readily interpreted
in terms of learning theoretic concepts, while psychologists continue to develop
theories that seem to be applicable only to the phenomena of the laboratory.
Hopefully, work of the sort described here will bridge this gap and help
lay the foundations for a theory of instruction.
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Abstract

Phe problem i Lo optimize Lhe dlewrning of o larpe Gernaneoet ioh
vocabulary. TFour optimization sirategies are proposed and evaluated
experimentally. The first strategy involves presenting items in a randéom
order and serves as a benchmark against which the others can be evaluated.
The second strategy permits S to determine on each trial of the experiment
which item is to be presented, thus placing instruction under "learner
control.” The third and fourth strategieé are based on a mathematical
model of the learning process; these strategies are computer controlled
and take account of S's response history in making decisions about which
items to present next. Performance on a delayed test administerad one week
after the instructional session indicated that the learner-controlled
strategy yielded a gain of 53% when compared to the random procedure, vhereas
the best of the two computer-controlled strategies yielded a gain of 108%.

Implications of the work for a theory of instiuction are considexred.
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OPITMIZING THE LEARNING OF A SKCOND-LANGUAGE VOCALULARY

Richard C. Atkingon

Stanford University

Stanford, California 94305

This paper examines the problem of individualizing the ‘instmctional
sequence so that the learning of a second-language vocabulary occurs at a
maximum rate. The constraints imposed on the experimental task are those
that typically apply to vocabulary learning in an instructional laboratory.
A large set of German-English items are to be learned during an instructional
session which involves a series of discrete trials. On each trial onc of the
German words is presented and S attempts to give the English translation; the
correct translation is then presented for a brief study period. A predeter-
mined number of trials is allocated for the instructicnal session , and after
sore intervening period of time a test is adminisi:ered over the entire
vocabulary set. The problem is to specify a strategy for presenting items
during the instructional sessiorn so that .pez:fomance on the delayed test will
be maximized. The instructional strategy will be referred to as an adaptive

teaching system to the extent that it takes into account S's response history

in deciding which items to present from trial to trial.

In this paper four strategies for sequencing the instructional material
are considered. One strategy (designated RO)' is to cycle through the set
of items in a random order; this strategy is not expected to be varticularly.
effective but it provides a benchmark against which to evaluate other Yo~
cedures. A second strategy (designated SS) is to let S determine for himsel?

30
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now best to sequence the material. In this mode S decides on ecach trial
which item is to be tested and studied; the learner rather than an externzl
controller detexmines the sequence of instruction. ~The thiré and fourth
sequencing schemes (designated OE and OU) can be regarded as adaptive teaching
systems and are based on a formal analysis of the learning process. I a
mathematical model of the learning process can be stated then it is possitle,
at least in theory, to derive an optimal strategy. 1In this paper two instruc-
tional strategies derived from a mathematical learning model are examined.
The details of these strategies will be presented later.

Before proceeding further, it will be useful to provide an overviev of
the experimental task. The experiment is run under computer control and

involves the learning of a set of 84 Gexrman-English items. The Ss are re-

quired to participate in two sessions: an instructional session and a test

session administered one week later. The delayed -test is the same for all

§_s and involves a test over the entire set of items. The instiuctional session

is more complicated. The vocabulary items are divided into seven lists each
containing twelve German words; the lists are arranged in a round-robin order
(see Fig. 1). On each trial of the instructional session a list is displayed

and S is permitted to inspect it for a brief period of time. Then one of

Insert Fn.gure 1l about here

the items on the displayed list is identified for test. In the RO, OE and OU
conditions the item is selected by the computer; in the SS condition the item
is sell-selected by S. After an item has been selected for test, S attempts

to provide a translation; then feedback regarding the correct translation is

-
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given. The next trial begins with the computer displaying the next lizt in
tie round-robin and the same procedure is repeated. The experiment ccoiinues
in this fashion for 336 trials (sce Fig. 2).

Insert Figure 2 about here

The concexrn of the experiment is to evaluate the relative effectiveness
of the four instructional strategies. Of particular interest is vhether
strategies derived from a theoretical analysis of the learning process can
be as effective ac a procedure where S makes his own decisions. If, in fact,
the learner is his own best decision maker then.the educator'!s probvlems are

simplified; the appropriate prescription is to place more instruction undexr

lcarncr control.
METIIOD

Subjects.- The Ss were 120 undergraduates enrolled in the summer session
at Stanford University; 30 Ss were rardomly assigned to each of the four ex-
perimentel conditionz. None of the students had prior course work in German
and none professed familiarity with the language. The Ss were run in groups
of eipht with two Ss in each group assigned to one of the four experimental
conditions.

dnterials.- Seven lists of 12 German words per list were formed. Fig. 1
displuys one of the lists as it was precented to S. PBased on prior experi-
rentation the lists were judged to be of roughly equal difficulty. All words

were concréte nouns typically taught during the first course in Gexman.




S

Proceiure.- The experiment was conducted in the Computer-EZased Icarni

-oa

C~.

Laboratory at Stanford University. The control functions were perforred by
programs run. on a modified PDP-1 compuuer mznufactured by The Digitel Equiprent
Corp. and under control of a time-sharing system. Eight teletypewriterz were
noused in a soundprooi room and faced a projection screen mounted on tae

front wall. The instructional session lasted approximately two hours with &

5 min. break in the mlddle. Bach trial was initiated by nrodect1n~ one of

the display lists on the front wall of the room; the list remained on the
screen throughout the trial. The Ss wexre permitted to inspect the list for
approximately 10 sec. In the RO, OE and'OU conditions this inspection period
was followed by the computer typing a number from one to twelve on each S's

teletycewriter indicating the item to be tested on that trial; the number

typed on a given teletypewriter depended on that S's particular control vrozrsm.
J2 g 3 28I Drog

In <the SS condition, S typed one of 12 numbered keys during the inspection
period to irndicate to the computer vwhich item he wanted to be tesied on.

Av the end of the inspection period S was required to type out the English
translation for the designated German word and then strike the "slash" key,
or if unable to provide a translation to simply hit the "slash” key. After
the "slash" ey had been activated the computer typed out the correct trans-
lation and spaced down two lines in preparation.for the next trial. The trial
teminated with the offset of the display list and the next trial began imme-
diately with the cnset of the next display list. A complete trial took
approzin&tely 20 sec. and the timing of events (within and between trials)

was syncaroncus for the eight Ss run together. The instructional session

involved & total of 336 trials which meant that each list was displayed 48

. 33
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times. In the RO condition this number of trials vemitted each of tre items
on a list to be tested and studied an average of four times.

The delayed-test session, conducted seven to eigﬁ’c days later, was pre=-
cisely the same for all Ss. All testing was done on the teletyvewriters.

tricl began with the computer typing a German word, and S was then required

to type the Englisn translation. The 8% German it'e'ms vere presen"ce& irn a
rendom order and S received no feedback on the correctness of his resypoase.
During the delayed-test session the trial sequence was self-paced.

All Ss were told at the beginning of the experiment that there would be
2 delayed-test session and that their principal goal was to achieve as righ
a& score as possible on that test. They were 'Eold, ﬂowever, not to think
about the experiment or rehearse any of the material during the intexrvening
week; these instructions were emphasized at the begimning and end of the
instructional session and later reports from Ss confirmed that they made no
special cffort to rehearse the material during the week between instruction
and the delayed test. The instructions emphasized that S should try to provide
& translatica fcr every item tested during {he ins<tructional session; if §
was uncertaln but cculd offer a guess he was encouraged to enter it. In the
RO, 02 ard OU conditions no additional instructions were given. In the SS
conditior, Ss were told that their itrial-to-trial selection of items should
te done with the aim of mastering the totel list. They were instructed that
it was best to test themselves on words théy. did not know rather than on

feniliar ones.
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RESULTS

The wresults of the cxperiment are swamarized in Fig. 3. On the left
side of the [figure duta are precented for performunce during the instructional
session; o the right cide are results from the delayed test. The data from

the instruetionul session arce presented in four successive blocks of &k trizls

Inzert Pfigure 3 about here

cuch; Tor the RO condition thiz means that on the average each itenm was pre-
scnted oace in each ‘of these tlocks. Note that perfomance during the
instructional session is b;:-:,'l; for the RO'condition , next vest for the CE
condilion which in olightly better than the S5 condition, and poorcst for
the OU condition; these differcnees are highly significunt, P(3,116) = 21.3,
P < .001l. The order of the experixaerital groups on the delayed test is
complctely reversed. The OU conditlon is by far best with a correct response
probabilivy of .79; the SS condition is next with .58 followed closely by

the OE condition at .5k; the RO conditicn is poorest at .38 (F(3,116) = 18.k,
p < .COl). The observed pattern of results ‘is what one would expect. In

tae SS condition Sz are trying to test themselves on items they do not know;
conceguently, during the instructional secsion, they'should have a lower
proportion of correct responses then Ss run on the RO procedure where items
are tested at random. Similarly, the OE and OU conditions involve a procedure
hat attempts to ldentify and testthose items that have not yet been mastered

and &lsc should produce high error rates during the instructional session.

!..
o
O

réering of groups on the delayed test is reversed since all words are
"tesicd in & non-selective fashion; under thaese conditions a "txue" measure

of S'z rmastery of the list is obtained. = '~
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The magnitude of the effects observed on the deleyed test are large
and of practical significance. The S5 condition (when compared to the =0

. g . . o 5 " . . . o
condition) leads to a relative gain of 53%, vhereas the OU condition yields
a relative goin of 108%. It ic interesting that S can be very eifective in

»

detemnining an optimal study sequence, but noct as effective as the test of

the two adaptive teaching systens.
DISCUSSION

At this point we turn to un account of the theory on which the OU and
Oiv wchuues arc hused. ]30'th_::;chcmcs acosume that acquicition of u tccond-
languapge vocabulary cuan be described by a fairly simple lcarning rmodel. It
Lo pustulated Lthat o given 1tem ic in one of three ctotes (I‘*,A’l' and U) ut
any wmoment in time. I the item is in stete P then its trenslation iz known
and this knowledge is “"relatively" permanent in the sense that the learning

of other items will.not interfere witn it. If the item is in state T then

it is also known but on a "temporary" besis; in state T the learning of other

items can give rise to interference eifects that cause the item to be for-

gotten. In state U the item is not known and S is unable to give a translation.

Thvs in states P and T a correact translation is given with probability ore,
vherzas in state U the probability is zero.

Wnen i;;em i is presented for test and‘study the following transition
matrix desceribes the possible change in state from the onset of the trial

to its texrmination:
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Q-L =P |=x l-}.l 0
U -yi zi .. l-yi- Zi_

Rows of thc matrix represent the state of item i at the start of tre trial

and columns the state at the end of the trial. On a trial when some iiem other
than item 1 is presented for test and study (vhether that item is & member of
iter i's display list or some othexr display list) transitions in the learning
state of item 1 also may take place. Such transitions can occur only if S
makes an error on the trial; in that case the transition matrix applied to

itenm _'j_. iz as follows: !

P i U
P {1 0 0]

F. =T 0 1-f, T
=7 1 1
U {0 0 1]

Basically, the idea is that when somne other item is presented to which S
rglces an ervor (i.e., an item in state U) then forgetting may occur for iten
i if it is in state T.

To swmmarize, when item 1 is presented for test and study transition

matrix A, is applied; when same other item is presented that elicits an erroxr

e
-l

is applied. The ebove assumptions provide a complete account

when ratrix F,

=i
oi tne learning process. TFor the task considered in this paper it is also
assumed that item i is either in state P (with probability gi) or in state

U (with provebility l-gi) at the start of the instructional session; S
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cither knows the correet translation without having studied the iten or dces
(=] A

- b

not. Thc parameter vector Qi = [:-:i, Vi0 25 f., g.] cheracterizes the lesa

ming

i

-

i i

ol a given item 1 in the vocabulary set. The first three parareters caarac-
s - Lo . o o e s e
teriZe the acquisition process; the next parameter, forgetting; and tae last 5
S's knovledge prior to entering the experiment.

For & more detailed account of the model the reader is referred to Atkinscn

and Crothers (196k4) and Calfee and Atkinson (1965). It hes been shown in a

()

series of experiments that the model provides a fairly good accouant of vocasu-
lary learning and for this reason it was used to develop an optimal procegure
for controlling instruction. We now turn to a discussion of how CE and QU
procedurcs were derived from the model. Pri.or to conducting the experiment
weported Lo Lhils paper, o pllot study was ran using the same wbrd licts and
the RO procedure described above. Data from the pilot study were emvloyed

to estimote the parameters of the model; the estimates were obtained sing

ct

ne rinimum chi square procedures discussed in Atkinson and Crothers (196k).
Two separate estimates of parameters were made. In ore case it was assumed
thet the items were equally difficult and data from all 8& items were lumped
together to obtain a single_ estimate of the parameter vector ¢; this estimation
procedure will be called the equal parameter case (E-case), since all itews
are assumed to be of equal difficuliy. In the second case data were separated
oy items anc an estimate of ¢, wes made for each of the.8h items (i.e.,

8L X 5 = 420 parameters were estimated); this procedure. will be called the
unequal paremeter case (U-case). In both the U and E cases it was assumed

that there were no differences among Ss; this homogeneity aséumption regarding

iearaers will te comrented upon later. The two sets of parameter estimates

» 38
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2 1P it iz tested and studied on the trizl.

20

were uscd to generate the optimization schemes previously relerred to as
the OB und OU procedures; the former based on estimates from casze E and
the latter from case U.

In order to formulate an instructional strategy it is necessary to e
Drecise about the quantity to be maximized. For the present experiment ihe
goal is to maximize the total number of items S correctly transleates on tre
delayed test.l To do this, we need to specify the theoretical relationsaip
oetween the state of leamiqg at the end of the instructional session and
perlormance on the delayed test. The assumption mede here is that only those

items in state P at the end of the instructional session will be transleted

correctly on the delayed test; an item in state T at the end of the insiruc-

cl

icnal session is presumed to be forgotten during the intervening week. Thus,

ct

he problem of maximizing delayed-test performance involves, at least in
<heory, meximizing the numbe:c_' of items in state P at the termination of the
instructional session.

Having numerical values Tor parameters and knowing S's response history,
it is possible to estimate his current state of learning.2 tated more pre-
cisely, the learning model can be used to derive equations and, in turn,
corpute tre probabllities of being in states P, T and U for each item at the
starc of trial n, conditionalized on S's response history up to and including

Trial n-l. Given numerical estimates of these probabilities a strategy for

(o]
L&}
rj.
9
' »
IS

ing performance is to select that item Zor presentation (from the

current display list) that has the greatest probability of moving into state

3
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The optimization procedurc described above was implemented on the con-
puter and permitted decisions to be made on-line for each £ on a trial-ty-
trial basis.® For Ss in the OE group, the computations were carried cut using
the five parameter values estimated under the assumption of homogeneous items
(E-case); for Sc in the OU group the computations were based on the 420
parameter values estimated under the assumption of heterogeneous items (U-caze).

The OU procedure is sensitive to inter-item differences'and consequently
generates a more effective 6ptimization strategy than the OE procedure. Thre
OE procedure, however, is not to be ignore@ for it is nearly as effective
as having S meke his own instructional decisions, and far superior to & randcm
presentation scheme. If individual differences among Ss also are taken into
account, then further improvements in delayed-test performance should be
possible; this issue and methods for dealing with individual differences are
discussed in Atkinson and Paulson (1972).

The study reported here illustrates one approach that can contribute
to the development of a theory of instruction (Hilgard, 1964). This is not
to suggest that the OU procedure represents a final éo]ntion to the problen
of optimal item selection. The model upon which this strategy is based
ignores several important factors, such as .intei'-i'tem relationships, motiva-
tion, and short-term memory effects (Atkinson & Shiffrin, 1968, p. 190).
Undoubtedly, strategies based on learning models that take these variables
into account would yield superior procedures.

Although the task considered in this paper deals with a limited form of
instruction, there are at least two practical reasons for studying'it. First,

this type of task occurs in numerous leéming situations; no matter what the

.40
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pedagogical orientation, any initial reading prcsgram or foreign-languaze
course involves some form of list learning. In this regard it should e
noted that a.modified version of the OU strategy has been used successiully
in the Stunford computer-assisted instruction progrum in initial reading
(Atkinson & Fletcher, 1972). Secondly, the study of s;uch relatively simple
tasks that can be understood in detail provides prototypes for analyzing
more complex optimization problems. At present, analyses comparable to thcse
reported here cannot be made for many instructional procedures of central

interest to educators, but examples of this sort help to clarify the steps

' involved in devising and testing optimal strategies. For a review o work

on optimizing learning and references to the literature see Atkinson and

Paulson (1972).
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FOOTNOTES

lo*;her measures can be used to assess the benefits of an instructicnal

strategy; e.g., in this case weights could be assigned to items measuring
their relative importance.. Also costs may be associated with the various
actions taken during an instructional session. Thus » for the general case,
the optimization problem involves assessing costs and benefits and finding
a strategy that maximizes an appropriate function defined on them. For a

discussion of this issue see Atkinson and Paulson (1972), Dear, et al. (1967),
.and Smallwood (1971).

2

The S's response history is a record for each trial of ‘the vocabulary item
presented and the- response that occurred. It can be shown that there exists

a sufficient history that contains only the information necessary to estimate

§'s cucrrent state of learning; the sufficient history is always a function of
the complete history and the assumed learning model. For the model considered
in this paper the sufficient history is fairly simple, but cannot be easily

-

described without extensivs notation.

3An optimal procedure maximizes the number of items in state P after all trials
of the instructional session have been presented.. The procedure used here

is only a one-stage optimization procedure and there ;.s,.no guarantee that it
is in fact optimal. However, the computations for the N-stage procedure are
too time-consuming even for & large computer. Furthermore, a series of Monte
Carlo studies indicate that tﬁe one-stage procedure is a good approximation
to the optimal strategy for a variety of Markov leaming models (Matheson,
196k ; Laubsch, 1970; Calfee, 1970). |
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Figure 1:

Figure 2:

Figure 3:

'FIGUEE CAPTIONS

Schematic mpresentation‘ of the round-robin of display lists

and an example of one such list.

Flow chart describing the trial sequence during the instructional
session. The selection of a word for test on a given trial (box

with heavy border) varied over experimental conditions.

Proportion of correct responses in successive trial blocks during

the instructional session and on the delayed test administered

one week later.
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Round - robin of Seven Lists Typical List

das Rad
die Seite
das Kino
die Gans
der Fluss
die Gegend
die Komera
der Anzug
das Geld
der Gipfel
das Bein
die Ecke
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Display first List
of 12 German Words

— - - ——

Select One Word
on Displayed List
for Test

Start

Instructional
Session

Display Next List
in Round-robin

Evaluate Student's Response
to Tested Word. |If Correct
so Indicate ; If Incorrect

so Indicate and Provide

Correct Translation

Terminate

Session

Instructional -

of Lists
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Each of the Seven Lists
Been Displayed 48 Times ?

.| Yes -
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